مدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام

نویسندگان

  • ابوالفضل جعفری دانشجوی دکتری مدیریت مالی دانشگاه علامه طباطبایی
چکیده مقاله:

این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد که ترکیب شبکه خود سازمانده کوهونن با شبکه پیش خور، در مقایسه با مدل منفرد شبکه پیش خور که پر کاربردترین مدل شبکه های عصبی مصنوعی در حوزه پیش بینی است عملکرد بهتری در پیش بینی قیمت سهام ارائه می کند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ترکیب شبکه های عصبی برای پیش بینی قیمت سهام

در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...

متن کامل

کاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام

مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...

متن کامل

ارزیابی مدلهای شبکه عصبی مصنوعی ایستا و پویا در پیش بینی قیمت سهام

پیشبینی آینده در عرصه پویای اقتصاد و بازارهای مالی از جمله بازار بورس به یکی از مهمترین مسائل درعلوم مالی ارتقاء یافته است. همچنین، در دههی اخیر مدلهای شبکه عصبی به علت عملکرد واقع بینانهتر اینمدلها مورد توجه محققین قرار گرفته و از انواع مختلف آنها برای پیشبینی استفاده شده است. اکنون این سئوالمطرح است که، کدام یک از این مدلها قدرت بالاتری برای تبیین فرآیندهای آتی بورس را دارا میباشد؟ در( همین ر...

متن کامل

مقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران

     با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به  مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی  زمانی1371:1 تا 1385:11 بوده و  از شر...

متن کامل

پیش بینی قیمت سهام با رویکرد ترکیبی شبکه عصبی مصنوعی و الگوریتم رقابت استعماری مبتنی بر تئوری آشوب

یکی از گزینه‌های موجود جهت سرمایه گذاری نقدینگی، بورس و اوراق بهادار می‌باشد. با توجه به ارتباطات غیرخطی موجود میان متغیرهای موثر بر قیمت سهام، شبکه های عصبی مصنوعی یکی از مناسب ترین رویکردهای موجود جهت پیش‌بینی قیمت سهام می باشند. در این مقاله سعی شده تا از طریق ترکیب نگاشت‌های آشوبی و الگوریتم رقابت استعماری، زاویه حرکتی مستعمرات به سمت استعمارگر اصلاح شده و به این ترتیب احتمال قرارگیری در دا...

متن کامل

پیش بینی قیمت سهام شرکت های بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی

پیش­بینی تغییر قیمت سهام به عنوان یک فعالیت چالش­انگیز در پیش­بینی     سری­های زمانی مالی در نظر گرفته می­شود. یک پیش­بینی صحیح از تغییر قیمت سهام می­تواند سود زیادی را برای سرمایه­گذاران به بار آورد. با توجه به پیچیدگی داده­های بازار بورس، توسعه مدل­های کارآمد برای پیش­بینی بسیار دشوار است. در این پژوهش، مدلی برای پیش­بینی قیمت سهام شرکت­های بورس اوراق بهادار تهران با بکارگیری داده­های درون­زا...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 19

صفحات  165- 187

تاریخ انتشار 2010-12-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023